Расчет питания светодиодов от сети 220в онлайн. Расчет и подбор сопротивления для светодиода. Рекомендации по подключению светодиодов с неизвестными характеристиками

Работа светодиода основана на излучении квантов света, возникающих при протекании по нему тока. В зависимости от этого меняется и яркость свечения элемента. При малом токе он светит тускло, а при большом - вспыхивает и сгорает. Для ограничения протекающего через него тока проще всего использовать сопротивление. Выполнить правильный расчёт резистора несложно, но при этом следует помнить, что он только ограничивает, но не стабилизирует ток.

Принцип работы и свойства

Светодиод - это прибор , обладающий способностью излучать свет. На печатных платах и схемах он обозначается латинскими буквами LED (Light Emitting Diode), что в переводе обозначает «светоизлучающий диод». Физически он представляет собой кристалл, помещённый в корпус. Классически им считается цилиндр, одна сторона которого имеет выпуклую округлую форму, являющуюся линзой-полусферой, а другая - плоское основание, и на ней располагаются выводы.

С развитием твердотельных технологий и уменьшения технологического процесса промышленность стала производить SMD-диоды, предназначенные для установки поверхностным монтажом. Несмотря на это, физический принцип работы светодиода не изменился и одинаков как для любого вида, так и для цвета устройства.

Процесс изготовления прибора излучения можно описать следующим образом. На первом этапе выращивают кристалл. Происходит это путём помещения искусственно изготовленного сапфира в заполненную газообразной смесью камеру. В состав этого газа входят легирующие добавки и полупроводник. При нагреве камеры происходит осаждение образующегося вещества на пластину, при этом толщина такого слоя не превышает нескольких микрон. После окончания процесса осаждения методом напыления формируются контактные площадки и вся эта конструкция помещается в корпус.

Из-за особенностей производства одинаковых по параметрам и характеристикам светодиодов не бывает. Поэтому хотя производители и стараются отсортировывать близкие по значениям устройства, нередко в одной партии попадаются изделия, отличающиеся по цветовой температуре и рабочему току.

Устройство радиоэлемента

Светодиод или LED-диод представляет собой полупроводниковый радиоэлемент, в основе работы которого лежат свойства электронно-дырочного перехода. При прохождении через него тока в прямом направлении на границе соприкосновения двух материалов возникают процессы рекомбинации, сопровождающиеся излучением в видимом спектре.

Очень долго промышленность не могла изготовить синий светодиод, из-за чего нельзя было получить и излучатель белого свечения. Лишь только в 1990 году исследователи японской корпорации Nichia Chemical Industries изобрели технологию получения кристалла, излучающего свет в синем спектре. Это автоматически позволило путём смешения зелёного, красного и синего цвета получить белый.

В основе процесса излучение лежит освобождение энергии при рекомбинации зарядов в зоне электронно-дырочного перехода. Образовывается он путём контакта двух полупроводниковых материалов с разной проводимостью. В результате инжекции, перехода неосновных носителей заряда, образуется запирающий слой.

На стороне материала с n-проводимостью возникает барьер из дырок, а на стороне с p-проводимостью - из электронов. Наступает равновесие. При подаче напряжения в прямом смещении происходит массовое перемещение зарядов в запрещённую зону с обеих сторон. В результате они сталкиваются и выделяется энергия в виде излучения света.

Этот свет может быть как видимым человеческому глазу, так и нет. Зависит это от состава полупроводника, количества примесей, ширины запрещённой зоны. Поэтому видимый спектр достигается путём изготовления многослойных полупроводниковых структур.

Характеристики светодиодов

Цвет свечения зависит от типа полупроводника и степени его легирования, что определяет ширину запрещённой зоны p-n перехода. Срок службы светодиодов в первую очередь зависит от температурных режимов его работы. Чем выше нагрев прибора, тем быстрее наступает его старение. А температура, в свою очередь, связана с проходящей через светодиод силой тока. Чем меньшей мощности источник света, тем дольше его срок службы. Старение выражается в виде уменьшения яркости прибора света. Поэтому так важно правильно подобрать сопротивление для светодиода.

К основным характеристикам LED-диодов относят:

Способы подключения

Для беспроблемной работы светодиода очень важно значение рабочего тока. Неверное подключение источников излучения или существенный разброс их параметров при совместной работе приведёт к превышению протекающего через них тока и дальнейшему перегоранию приборов. Связано это с увеличением температуры, из-за которой кристалл светодиода просто деформируется, а p-n переход пробьётся. Поэтому так важно ограничить подающуюся на источник света величину тока, то есть ограничить питающее напряжение.

Проще всего это выполнить, используя сопротивление, включённое последовательно в цепь излучателя. В этом качестве применяется обыкновенный резистор, но он должен иметь определённую величину. Его большое значение не сможет обеспечить нужную разность потенциалов для возникновения процесса рекомбинации, а меньшее - спалит. При этом нужно не только знать, как рассчитать сопротивление для светодиода, но и понимать, как правильно его поставить, особенно если схема насыщена радиоэлементами.

В электрической цепи может использоваться как один светодиод, так и несколько. При этом существует три схемы их включения:

  • одиночная;
  • последовательная;
  • параллельная.

Одиночный элемент

Когда в электрической цепи используется только один светодиод, то последовательно с ним ставится одни резистор. В результате такого подключения общее напряжение, приложенное к этому контуру, будет равно сумме падений разности потенциалов на каждом элементе цепи. Если обозначить эти потери на резисторе как Ur, а на светодиоде Us, то общее напряжение источника ЭДС будет равно: Uo = Ur + Us.

Перефразируя закон Ома для участка сети I = U / R, получается формула: U = I * R. Подставив полученное выражение в формулу для нахождения общего напряжения, получим:

Uo = IrRr + IsRs, где

  • Ir - ток, протекающий через резистор, А.
  • Rr - расчётное сопротивление резистора, Ом.
  • Is - ток, проходящий через светодиод, А.
  • Rs - внутренний импеданс светодиода, Ом.

Значение Rs изменяется в зависимости от условий работы источника излучения и его величина зависит от силы тока и разности потенциалов. Эту зависимость можно увидеть изучая вольт-амперную характеристику диода. На начальном этапе происходит плавное увеличение тока, а Rs имеет высокое значение. После импеданс резко падает и ток стремительно возрастает даже при незначительном росте напряжения.

Если соединить формулы, получится следующее выражение:

Rr = (Uo - Us) / Io, Ом

При этом учитывается, что сила тока, протекающего в последовательном контуре участка цепи, одинакова в любой его точке, то есть Io = Ir = Is. Это выражение подходит и для последовательного соединения светодиодов, ведь при нём для всей цепи используется также лишь один резистор.

Таким образом, для нахождения нужного сопротивления остаётся узнать величину Us. Значение падения напряжения на светодиоде является справочной величиной и для каждого радиоэлемента она своя. Для получения данных понадобится воспользоваться даташитом на устройство. Даташит - это набор информационных листов, которые содержат исчерпывающие сведения о параметрах, режимах эксплуатации, а также схемы включения радиоэлемента. Выпускает его производитель изделия.

Параллельная цепь

При параллельном соединение радиоэлементы контактируют между собой в двух точках - узлах. Для такого типа цепи справедливы два правила: сила тока, входящая в узел, равна сумме сил токов, исходящих из узла, и разность потенциалов во всех точках узлов одинакова. Исходя из этих определений, можно сделать заключение, что в случае параллельного соединения светодиодов искомый резистор, располагающийся в начале узла, находится по формуле: Rr = Uo / Is1+In, Ом, где:

  • Uo - приложенная к узлам разность потенциалов.
  • Is1 - сила тока, протекающая через первый светодиод.
  • In - ток, проходящий через n-й светодиод.

Но такая схема с общим сопротивлением, располагающимся перед параллельным соединением светодиодов, - не используется. Связанно это с тем, что в случае перегорания одного излучателя, согласно закону, сила тока, входящая в узел, останется неизменной. А это значит, она распределится между оставшимися рабочими элементами и при этом через них пойдёт больший ток. В результате возникнет цепная реакция и все полупроводниковые излучатели в конечном счёте сгорят.

Поэтому правильно будет использовать собственный резистор для каждой параллельной ветки со своим светодиодом и выполнить расчёт резистора для светодиода отдельно для каждого плеча. Такой подход ещё выгоден тем, что в схеме можно использовать радиоэлементы с разными характеристиками.

Расчёт сопротивления каждого плеча происходит аналогично одиночному включению: Rn = (Uo - Us) / In, Ом, где:

  • Rn - искомое сопротивление n -ой ветки.
  • Uo - Us - разность падений напряжений.
  • In - сила тока через n-й светодиод.

Пример расчёта

Пускай на электрическую схему поступает питание от источника постоянного напряжения, равного 32 вольтам. В этой схеме стоят два параллельно включённых друг другу светодиода марки: Cree C503B-RAS и Cree XM-L T6. Для расчёта требуемого импеданса понадобится узнать из даташита типовое значение падения напряжения на этих светодиодах. Так, для первого оно составляет 2.1 В при токе 0,2, а второго - 2,9 В при той же величине силы тока.

Подставив данные значения в формулу для последовательной цепи, получится следующий результат:

  • R1 =(U0-Us1)/ I=(32−2,1)/0,2 = 21,5 Ом.
  • R2 = (U0-Us2)/ I=(32−2,9)/0,2 = 17,5 Ом.

Из стандартного ряда подбирают ближайшие значения. Ими будут: R1 = 22 Ома и R2 = 18 Ом. При желании можно рассчитать и мощность, рассеиваемую на резисторах по формуле: P = I*I*U. Для найденных резисторов она составит P= 0,001 Вт.

Браузерные онлайн-калькуляторы

При большом количестве светодиодов в схеме рассчитывать для каждого сопротивление - процесс довольно утомительный, тем более что при этом можно допустить ошибку. Поэтому проще всего для расчётов использовать онлайн-калькуляторы.

Представляют они собой программу, написанную для работы в браузере. В интернете можно встретить много таких калькуляторов для светодиодов , но принцип работы у них одинаков. Понадобится ввести справочные данные в предложенных формах, выбрать схему подключения и нажать кнопку «Результат» или «Расчёт». После чего останется только дождаться ответа.

Пересчитав вручную, его можно проверить, но особого смысла в этом не будет, так как при вычислении программы используют аналогичные формулы.

Сегодня мы начнем с изучения нового элемента, а именно светодиода. Основные сведения о светодиоде собраны в отдельной статье .

Светодиод, в основном, имеет 2 вывода: длинный вывод (анод) соединяется с плюсом питания, более короткий вывод (катод) с минусом. Светодиод, подключенный наоборот не будет светиться, и кроме того, при превышении определенного напряжения может даже сгореть.

С чего следует начать при работе со светодиодом? С просмотра технических параметров на конкретный светодиод! Иногда необходимые нам сведения можно также получить при покупке в магазине. Что же нам нужно знать? То, что мы ищем – это прямой ток (forward current) и прямое напряжение (forward voltage).

Для светодиода главное — это правильно подобранный ток, так как он напрямую влияет на срок службы светодиода. Поэтому мы говорим, что светодиод — это элемент, питаемый током (не напряжением!).

При изучении datasheet для одноцветных светодиодов размером 5мм вот что было обнаружено:

  • красный светодиод: 20 мА / 2,1 В
  • зеленый светодиод: 20 мА / 2,2 В
  • желтый светодиод: 20 мА / 2,2 В
  • оранжевый светодиод: 25 мА / 2,1 В
  • синий светодиодный индикатор: 20 мА / 3,2 В
  • светодиод белый: 25 мА / 3,4 В

(параметры светодиодов могут незначительно отличаться в зависимости от экземпляра и производителя светодиодов)

Нашим источником питания, как и в предыдущих упражнениях, является кассета из 4 батареек, дающие напряжение около 6 вольт. Теперь встает вопрос: как подобрать резистор для ограничения тока красного светодиода, подключенного согласно следующей схеме:

Наша батарея обеспечивает напряжение порядка 6 вольт. Красному светодиоду необходим ток около 20мА. Плюс ко всему нужно учесть падение напряжения на этом светодиоде, т. е. 2,1 вольт:

U R1 = U B1 – U D1

U R1 = 6В – 2,1В

Теперь достаточно подставить наши данные в формулу:

R1 = 3,9В / 20мА

R1 = 3,9В / 0,02А

Таким вот простым способом мы рассчитали сопротивление резистора R1 для красного светодиода, который должен иметь сопротивление минимум 195 Ом. Но вы не сможете найти такого номинала! Что же делать в таком случае? Надо взять из резистор большей величины, но с максимально близким сопротивлением.

Ближайший в номинальном ряду резисторов находится резистор с сопротивлением 200 Ом, и именно такой мы должны использовать в нашей схеме. Почему? Конечно, ничто не мешает нам использовать резистор большего сопротивления, например, 470 Ом, 2,2 кОм… Но как это повлияет на свечение нашего светодиода? Давайте проверим!

На фото этого конечно не заметно, но светодиод светит очень ярко с резистором 200 Ом. Но что случится, если мы заменим резистор на другой, с большим сопротивлением, например, 470 Ом? Светодиод по-прежнему горит. Дальше будем последовательно увеличивать сопротивление: 2,2кОм, 3,9кОм, 4,7кОм… Обратите внимание, что светодиод с увеличением сопротивления резистора светит все слабее и слабее пока, наконец, вообще не перестает светиться.

Еще одно замечание по существу — необходимо использовать резисторы немного больше, чем это следует из расчетов (например, 210 Ом вместо 200 Ом). Почему? Наверно вы обратили внимание, что для расчетов мы взяли номинальное напряжение нашей батареи, в реальности свежие батарейки могут давать более высокое напряжение и поэтому сопротивление резистора может быть недостаточным. Ток на светодиоде будет выше необходимого, что в конечном счете скажется на сроке его службы.

Еще один пример, из жизни (вернее из частых вопросов). Как подобрать резистор для схемы (в автомобиль) , в которой последовательно соединены два красных светодиода (прямой ток 20 мА, прямое напряжение 2,1 В)?

Величину сопротивления резистора R1 рассчитываем аналогично, как в примере выше, с той лишь разницей, что от напряжения бортовой сети автомобиля (14В), необходимо вычесть падение напряжения на обоих диодах D1 и D2:

U R1 = U E1 – U D1 – U D2

U R1 = 14В – 2,1В – 2,1В

Теперь подставим данные в формулу:

R1 = 9,8В / 20мА

R1 = 9,8В / 0,02А

Резистор R1, к которому подключены последовательно два красных светодиода, должен иметь сопротивление минимум 490 Ом. Ближайший в ряду является резистор номиналом 510 Ом. Если у вас нет резистора номиналом 510 Ом, помните, что вы можете соединить последовательно несколько резисторов, например, 5 резисторов по 100 Ом.

А можем ли мы в этой схеме последовательно подключить еще 5 светодиодов? Нет! На каждом из подключенных светодиодов возникает некоторое падение напряжения, другими словами каждый из них потребляет некоторое количество напряжения, например, каждому красному светодиоду нужно 2,1 вольт. Легко подсчитать, что наша батарея не в состоянии обеспечить такое напряжение:

14В < 2,1В + 2,1В + 2,1В + 2,1В + 2,1В+ 2,1В + 2,1В

14В < 14,7В

Приведенный выше пример касается схемы, установленной в автомобиле, где источник напряжения 14В.

Следующий пример будет касаться параллельного соединения светодиодов, так как показано на следующем рисунке:

На этот раз предположим, что светодиод — D1 красный (прямой ток 20 мА, прямое напряжение около 2,1 В), а светодиод D2 имеет белый цвет (прямой ток 25 мА, прямое напряжение 3,4 В).

Из первого закона Кирхгофа мы знаем, что:

I = 20мА + 25мА

Подключая светодиоды параллельно к источнику питания, следует помнить, что каждый светодиод должен иметь свой резистор! Теперь давайте посчитаем падение напряжения на каждом из резисторов:

U R 1 = U B 1 – U D 1

U R1 = 6В – 2,1В

U R 2 = U B 1 – U D 2

U R2 = 6В – 3,4В

Мы знаем, силу тока и напряжение, давайте посчитаем сопротивление:

R1 = U R 1 / I 1

R1 = 3,9В / 20мА

R1 = 3,9В / 0,02А

R2 = 2,6В / 25мА

R2 = 2,6В / 0,025А

Резистор R1 должен иметь сопротивление как минимум 195 Ом (ближайший в номинальном ряду резистор на 200 Ом), а резистор R2 должен иметь сопротивление не менее 104 Ом (ближайший в ряду будет на 120 Ом).

Как лучше соединять светодиоды: последовательно или параллельно? Ответ не простой, потому что оба варианта имеют свои плюсы и минусы:

Вид соединения светодиодов

последовательное

параллельное

для всех светодиодов достаточно одного
резистор
каждый светодиод должен иметь свой собственный резистор
повреждение одного светодиода приводит к
отключению всей цепочки светодиодов
при повреждении одного или несколько светодиодов, остальные светодиоды будут светятся
низкое значение тока ток в цепи увеличивается с каждым последующим светодиодом (ток
каждой ветви суммируется)
требуется более высокое напряжение источника питания
с учетом падения напряжения на
каждый из светодиодов
напряжение питания в схеме может быть
низким

Под конец урока рассмотрим еще один популярный вид – мощные светодиоды. Благодаря им, мы можем получить яркий свет. Мощные светодиоды используются, например, в автомобилях, поэтому следующий пример будет касаться именно проблемы установки мощных светодиодов в автомобиле.

Напряжение в сети автомобиля 14 вольт. Мощный светодиод имеет прямой ток 350 мА и падение напряжения 3,3 вольт. Рассчитаем сопротивление для мощного светодиода так, как мы это делали выше:

U R1 = U E1 – U D1

U R1 = 14В – 3,3В

R1 = U R1 / I
R1 = 10,7В / 350мА
R1 = 31 Ом

Для нашего примера надо подобрать резистор минимум 31 Ом. Проблема в том, что мощный светодиод, как указывает само название, имеет большую мощность и здесь обычный резистор не достаточен. Помимо соответствующего сопротивления наш резистор должен иметь соответствующую номинальную мощность, т. е. допустимую мощность, которая выделяется на резисторе при его работе.

Помните, что основная задача резистора — это сопротивление току. При сопротивлении всегда будет выделяться тепло в той или иной степени. Слишком большая мощность может повредить резистор.
Мощность вычисляем по следующей формуле:

P = 10,7В x 350мА

Номинальная мощность нашего резистора — это минимум 3,7 Вт. В связи с этим, наши стандартные резисторы мощностью 0,25 Вт быстро сгорят. В приведенном выше примере необходимо применить резистор на 5 Вт, но лучшим решением использование нескольких резисторов по 5 Вт, соединенных последовательно или параллельно. Почему? Причина в том, что резисторы плохо отводят тепло (хотя бы из-за их формы), а использование нескольких резисторов сразу увеличит общую площадь поверхности, через которую происходит отдача тепла.

При подборе резистора для мощного светодиода необходимо дополнительно учитывать значительное повышение температуры самого светодиода, что вызывает изменение прямого тока. Поэтому лучше взять резистор большего сопротивления, что обеспечит стабильную работу светодиода при увеличении прямого тока из-за его нагрева во время работы.

Но на практике для питания мощных светодиодов применяют стабилизаторы тока, которые будут обсуждаться в последующих уроках.

Общее правило при подборе резистора (резисторов) для светодиодов является использование чуть большего сопротивления, чем это следует из расчетов. Прямой ток и падение напряжения, протекающие через светодиод лучше измерить мультиметром, чтобы в расчетах учитывать реальные параметры конкретного светодиода.

Обычный маленький светодиод выглядит как пластиковая колбочка-линза на проводящих ножках, внутри которой расположены катод и анод. На схеме светодиод изображается как обычный диод, от которого стрелочками показан излучаемый свет. Вот и служит светодиод для получения света, когда электроны движутся от катода к аноду — излучается видимый свет.

Изобретение светодиода приходится на далекие 1970-е, когда для получения света во всю применяли лампы накаливания. Но именно сегодня, в начале 21 века, светодиоды заняли наконец место самых эффективных источников электрического света.

Где у светодиода «плюс», а где «минус»?

Чтобы правильно подключить светодиод к источнику питания, необходимо прежде всего соблюсти полярность. Анод светодиода подключается к плюсу «+» источника питания, а катод — к минусу «-». Катод, подключаемый к минусу, имеет вывод короткий, анод, соответственно, - длинный — длинную ножку светодиода - на плюс «+» источника питания.

Взгляните во внутрь светодиода: большой электрод — это катод, его — к минусу, маленький электрод, похожий просто на окончание ножки, - на плюс. А еще рядом с катодом линза светодиода имеет плоский срез.

Паяльник долго на ножке не держать

Паять выводы светодиода следует аккуратно и быстро, ведь полупроводниковый переход очень боится лишнего тепла, поэтому нужно краткими движениями паяльника дотрагиваться его жалом до припаиваемой ножки, и тут же паяльник отводить в сторону. Лучше в процессе пайки держать припаиваемую ножку светодиода пинцетом, чтобы обеспечить на всякий случай отвод тепла от ножки.

Резистор обязателен при проверке светодиода

Мы подошли к самому главному — как подключить светодиод к источнику питания. Если вы хотите , то не стоит напрямую присоединять его к батарее или к блоку питания. Если ваш блок питания на 12 вольт, то используйте для подстраховки резистор на 1 кОм последовательно с проверяемым светодиодом.

Не забывайте о полярности — длинный вывод на плюс, вывод от большого внутреннего электрода — к минусу. Если не использовать резистор, то светодиод быстро перегорит, в случае если вы нечаянно превысите номинальное напряжение, через p-n-переход потечет большой ток, и светодиод практически тут же выйдет из строя.

Светодиоды бывают разных цветов, однако цвет свечения не всегда определяется цветом линзы светодиода. Белый, красный, синий, оранжевый, зеленый или желтый — линза может быть прозрачной, а включишь — окажется красным или синим. Светодиоды синего и белого свечения — самые дорогие. Вообще, на цвет свечения светодиода влияет в первую очередь состав полупроводника, и как вторичный фактор - цвет линзы.

Находим номинал резистора для светодиода

Резистор включается последовательно со светодиодом. Функция резистора — ограничить ток, сделать его близким к номиналу светодиода, чтобы светодиод мгновенно не перегорел, и работал бы в нормальном номинальном режиме. Берем в расчет следующие исходные данные:

    Vps - напряжение источника питания;

    Vdf - прямое падение напряжения на светодиоде в нормальном режиме;

    If - номинальный ток светодиода при нормальном режиме свечения.

Теперь, прежде чем находить , отметим, что ток в последовательной цепи у нас будет постоянным, одним и тем же в каждом элементе: ток If через светодиод будет равен току Ir через ограничительный резистор.

Следовательно Ir = If. Но Ir = Ur/R - по закону Ома. А Ur = Vps-Vdf. Таким образом, R = Ur/Ir = (Vps-Vdf)/If.

То есть, зная напряжение источника питания, падение напряжения на светодиоде и его номинальный ток, можно легко подобрать подходящий ограничительный резистор.

Если найденное значение сопротивления не удается выбрать из стандартного ряда номиналов резисторов, то берут резистор несколько большего номинала, например вместо найденных 460 Ом, берут 470 Ом, которые всегда легко найти. Яркость свечения светодиода уменьшится весьма незначительно.

Пример подбора резистора:

Допустим, имеется источник питания на 12 вольт, и светодиод, которому нужно 1,5 вольта и 10 мА для нормального свечения. Подберем гасящий резистор. На резисторе должно упасть 12-1,5 = 10,5 вольт, а ток в последовательной цепи (источник питания, резистор, светодиод) должен получиться 10 мА, следовательно из Закона Ома: R = U/I = 10,5/0,010 = 1050 Ом. Выбираем 1,1 кОм.

Какой мощности должен быть резистор? Если R = 1100 Ом, а ток составит 0,01 А, то, по закону Джоуля-Ленца, на резисторе каждую секунду будет выделяться тепловая энергия Q = I*I*R = 0,11 Дж, что эквивалентно 0,11 Вт. Резистор мощностью 0,125 Вт подойдет, даже запас останется.

Последовательное соединение светодиодов

Если перед вами стоит цель соединить несколько светодиодов в единый источник света, то лучше всего соединение выполнять последовательно. Это нужно для того, чтобы к каждому светодиоду не цеплять свой резистор, чтобы избежать лишних потерь энергии. Наиболее подходят для последовательного соединения светодиоды одного и того же вида, из одной и той же партии.

Допустим, необходимо последовательно объединить 8 светодиодов по 1,4 вольта с током по 0,02 А для подключения к источнику питания 12 вольт. Очевидно, общий ток будет составлять 0,02 А, но общее напряжение составит 11,2 вольта, следовательно 0,8 вольт при токе в 0,02 А должны рассеяться на резисторе. R = U/I = 0,8/0,02 = 40 Ом. Выбираем резистор на 43 Ом минимальной мощности.

Параллельное соединение цепочек светодиодов — не лучший вариант

Если есть выбор, то светодиоды лучше всего соединять последовательно, а не параллельно. Если соединить несколько светодиодов параллельно через один общий резистор, то в силу разброса параметров светодиодов, каждый из них будет не в равных условиях с остальными, какой-то будет светиться ярче, принимая больше тока, а какой-то — наоборот тусклее. В результате, какой-нибудь из светодиодов сгорит раньше в силу быстрой деградации кристалла. Лучше для параллельного соединения светодиодов, если альтернативы нет, применить к каждой цепочке свой ограничительный резистор.

Светодиод является полупроводниковым прибором с нелинейной вольт-амперная характеристикой (ВАХ). Его стабильная работа, в первую очередь, зависит от величины, протекающего через него тока. Любая, даже незначительная, перегрузка приводит к деградации светодиодного чипа и снижению его рабочего ресурса.

Чтобы ограничить ток, протекающий через светодиод на нужном уровне, электрическую цепь необходимо дополнить стабилизатором. Простейшим, ограничивающим ток элементом, является резистор.

Важно! Резистор ограничивает, но не стабилизирует ток.

Расчет резистора для светодиода не является сложной задачей и производится по простой школьной формуле. А вот с физическими процессами, протекающими в p-n-переходе светодиода, рекомендуется познакомиться ближе.

Теория

Математический расчет

Ниже представлена принципиальная электрическая схема в самом простом варианте. В ней светодиод и резистор образуют последовательный контур, по которому протекает одинаковый ток (I). Питается схема от источника ЭДС напряжением (U). В рабочем режиме на элементах цепи происходит падение напряжения: на резисторе (U R) и на светодиоде (U LED). Используя второе правило Кирхгофа, получается следующее равенство: или его интерпретация

В приведенных формулах R – это сопротивление рассчитываемого резистора (Ом), R LED – дифференциальное сопротивление светодиода (Ом), U – напряжения (В).

Значение R LED меняется при изменении условий работы полупроводникового прибора. В данном случае переменными величинами являются ток и напряжение, от соотношения которых зависит величина сопротивления. Наглядным объяснением сказанного служит ВАХ светодиода. На начальном участке характеристики (примерно до 2 вольт) происходит плавное нарастание тока, в результате чего R LED имеет большое значение. Затем p-n-переход открывается, что сопровождается резким увеличением тока при незначительном росте прикладываемого напряжения.

Путём несложного преобразования первых двух формул можно определить сопротивление токоограничивающего резистора: U LED является паспортной величиной для каждого отдельного типа светодиодов.

Графический расчет

Имея на руках ВАХ исследуемого светодиода, можно рассчитать резистор графическим способом. Конечно, такой способ не имеет широкого практического применения. Ведь зная ток нагрузки, из графика можно легко вычислить величину прямого напряжения. Для этого достаточно с оси ординат (I) провести прямую линию до пересечения с кривой, а затем опустить линию на ось абсцисс (U LED). В итоге все данные для расчета сопротивления получены.

Тем не менее, вариант с использованием графика уникален и заслуживает определенного внимания.

Рассчитаем резистор для светодиода с номинальным током 20 мА, который необходимо подключить к источнику питания 5 В. Для этого из точки 20 мА проводим прямую линию до пересечения с кривой LED. Далее через точку 5 В и точку на графике проводим линию до пересечения с осью ординат и получаем максимальное значение тока (I max), примерно равное 50 мА. Используя закон Ома, рассчитываем сопротивление: Чтобы схема была безопасной и надёжной нужно исключить перегрев резистора. Для этого следует найти его мощность рассеивания по формуле:

В каких случаях допускается подключение светодиода через резистор?

Подключать светодиод через резистор можно, если вопрос эффективности схемы не является первостепенным. Например, использование светодиода в роли индикатора для подсветки выключателя или указателя сетевого напряжения в электроприборах. В подобных устройствах яркость не важна, а мощность потребления не превышает 0,1 Вт. Подключая светодиод с потреблением более 1 Вт, нужно быть уверенным в том, что блок питания выдаёт стабилизированное напряжение.

Если входное напряжение схемы не стабилизировано, то все помехи и скачки будут передаваться в нагрузку, нарушая работу светодиода. Ярким примером служит автомобильная электрическая сеть, в которой напряжение на аккумуляторе только теоретически составляет 12 В. В самом простом случае делать светодиодную подсветку в машине следует через линейный стабилизатор из серии LM78XX. А чтобы хоть как-то повысить КПД схемы, включать нужно по 3 светодиода последовательно. Также схема питания через резистор востребована в лабораторных целях для тестирования новых моделей светодиодов. В остальных случаях рекомендуется использовать стабилизатор тока (драйвер). Особенно тогда, когда стоимость излучающего диода соизмерима со стоимостью драйвера. Вы получаете готовое устройство с известными параметрами, которое остаётся лишь правильно подключить.

Примеры расчетов сопротивления и мощности резистора

Чтобы помочь новичкам сориентироваться, приведем пару практических примеров расчета сопротивления для светодиодов.

Cree XM–L T6

В первом случае проведем вычисление резистора, необходимого для подключения мощного светодиода к источнику напряжения 5 В. Cree XM–L с бином T6 имеет такие параметры: типовое U LED = 2,9 В и максимальное U LED = 3,5 В при токе I LED =0,7 А. В расчёты следует подставлять типовое значение U LED , так как. оно чаще всего соответствует действительности. Рассчитанный номинал резистора присутствует в ряду Е24 и имеет допуск в 5%. Однако на практике часто приходится округлять полученные результаты к ближайшему значению из стандартного ряда. Получается, что с учетом округления и допуска в 5% реальное сопротивление изменяется и вслед за ним обратно пропорционально меняется ток. Поэтому, чтобы не превысить рабочий ток нагрузки, необходимо расчётное сопротивление округлять в сторону увеличения.

Используя наиболее распространённые резисторы из ряда Е24, не всегда удаётся подобрать нужный номинал. Решить эту проблему можно двумя способами. Первый подразумевает последовательное включение добавочного токоограничительного сопротивления, который должен компенсировать недостающие Омы. Его подбор должен сопровождаться контрольными измерениями тока.

Второй способ обеспечивает более высокую точность, так как предполагает установку прецизионного резистора. Это такой элемент, сопротивление которого не зависит от температуры и прочих внешних факторов и имеет отклонение не более 1% (ряд Е96). В любом случае лучше оставить реальный ток немного меньше от номинала. Это не сильно повлияет на яркость, зато обеспечит кристаллу щадящий режим работы.

Мощность, рассеиваемая резистором, составит:

Рассчитанную мощность резистора для светодиода обязательно следует увеличить на 20–30%.

Вычислим КПД собранного светильника:

Пример с LED SMD 5050

По аналогии с первым примером разберемся, какой нужен резистор для . Здесь нужно учесть конструкционные особенности светодиода, который состоит из трёх независимых кристаллов.

Если LED SMD 5050 одноцветный, то прямое напряжение в открытом состоянии на каждом кристалле будет отличаться не более, чем на 0,1 В. Значит, светодиод можно запитать от одного резистора, объединив 3 анода в одну группу, а три катода – в другую. Подберем резистор для подключения белого SMD 5050 с параметрами: типовое U LED =3,3 В при токе одного чипа I LED =0,02 А. Ближайшее стандартное значение – 30 Ом.

Принимаем к монтажу ограничительный резистор мощностью 0,25 Вт и сопротивлением в 30 Ом ±5%.

У RGB светодиода SMD 5050 различное прямое напряжение каждого кристалла. Поэтому управлять красным, зелёным и синим цветом, придётся тремя резисторами разного номинала.

Онлайн-калькулятор

Представленный ниже онлайн калькулятор для светодиодов – это удобное дополнение, которое произведет все расчеты самостоятельно. С его помощью не придётся ничего рисовать и вычислять вручную. Всё что нужно – это ввести два главных параметра светодиода, указать их количество и напряжение источника питания. Одним кликом мышки программа самостоятельно произведёт расчет сопротивления резистора, подберёт его номинал из стандартного ряда и укажет цветовую маркировку. Кроме этого, программа предложит уже готовую схему включения.

Результатом расчета будут точное значение номинала резистора и близкое к нему типовое значение заводского номинала резистора.
Светодиоды по праву заслужили признание автолюбителей, ведь они дают мощный световой поток при мизерном потреблении (в сравнении с обычными автомобильными лампами накала), а так же предоставляют широкий выбор цвета свечения и габаритов. Часто, любители в процессе переделки сгоревших ламп накаливания в светодиодные, сталкиваются с вопросом: как подключить светодиод к бортовой сети автомобиля (у легкового 12 Вольт, у грузового 24 Вольта) или мотоцикла (6-12 Вольт)? Ведь подключив напрямую вы сразу его спалите . В этой статье я расскажу как правильно подключать один или несколько светодиодов к источнику питания . Вы узнаете для чего светодиоду нужен резистор и сможете рассчитать его значение при помощи нашего онлайн калькулятора.

Как правильно подключить светодиод к бортовой сети.

Для правильной работы светодиода необходимо ограничить ток протекающий через него. Для этого, к бортовой сети светодиод подключается последовательно с токоограничивающим резистором. Необходимость в ограничении тока обосновывается зависимостью срока службы светодиода от проходящего тока, чем он выше тем меньше срок службы. Но следует отметить, что зависимость эта нелинейная и при превышении определенного рекомендованного порога (смотрите Datasheet на вашу модель) диод выходит из строя.

На рисунке приведены несколько вариантов включения светодиодов с резисторами а так же указаны какие из включений являются оптимальными, какие правильными но менее оптимальными в плане энергопотребления, а какое неправильное и приведет к значительному сокращению срока службы светодиодов. С вариантом схемы включения определились, теперь предстоит выяснить какой резистор нужен для светодиода.

Онлайн калькулятор: “Расчет резистора для светодиода”.

Формула для расчета резистора выглядит следующим образом: R= (Uпит – (Uпр.св* N))/I
Где: Uпит- напряжение источника питания Uпр.св- прямое напряжение на светодиоде, N-количество светодиодов, I- ток проходящий через светодиод. Естественно возникает вопрос где взять эти данные? Для тех кто решил махнуть рукой т.к. не знает ничего о названии и происхождении добытых диодов,- скажу не спешите, чуть ниже будет дано универсальное решение вашего вопроса.

Давайте рассмотрим в качестве примера Datasheet на 3 миллиметровый светодиод фирмы kingbright
На рисунке ниже скриншот с указанием характеристик светодиода при силе тока проходящего через него 2 мА при температуре 25С. Из всех представленных характеристик нас интересует лишь Forward Voltage – прямое напряжение на светодиоде.

  • мощности
  • импульсного тока
  • прямого постоянного тока (DC Forward Current) именно это значение нас и интересует, в данном случае нельзя допускать прохождение тока выше 25 миллиампер (при температуре 25 градусов по Цельсию).

Последний рисунок иллюстрирует зависимость характеристик от условий использования:

  • зависимость прямого напряжения от проходящего тока
  • зависимость интенсивности светового потока от проходящего тока
  • зависимость проходящего тока от температуры
  • зависимость интенсивности светового потока от от температуры

Исходя из полученных в Datasheet данных можно сделать вывод, что оптимальным является значение проходящего тока от 2 до 10 миллиампер, при этом типовое значение прямого напряжение на выводах светодиода составляет от 1,9 до 2 Вольт.

Пример расчета №1 Если ввести в онлайн калькулятор напряжение бортовой сети 12 (В), значение тока 2 (мА), значение прямого напряжения 1,9 (В) количество светодиодов 1 получим расчетное значение резистора = 5050 Ом Ближайший производственный номинал резистора 5100 Ом или 5,1 кОм маркировка отечественных резисторов 5к1 маркировка smd резистора 512

Пример расчета №2 Если ввести в калькулятор напряжение бортовой сети грузовика 24 (В), значение тока 10 (мА) светим по полной:), значение прямого напряжения 2 (В) количество светодиодов 3 (маленькая гирлянда получилась) расчетное значение резистора = 1800 Ом Ближайший производственный номинал резистора 1800 Ом или 1,8 кОм маркировка отечественных резисторов 1к8 маркировка smd резистора 182

Рекомендации по подключению светодиодов с неизвестными характеристиками:

Примите в качестве значения тока 5-10 (мА), значение прямого напряжения на светодиоде 1,5-2 (В), введите в калькулятор напряжение вашей бортсети и произведите расчет. С вероятностью в 99% ваш светодиод в таком режиме прослужит не один год. Проконтролировать точность расчета можно измерив проходящий через диод ток, для этого амперметр подключается последовательно с вашей цепочкой из резистора и светодиода. Если есть вопросы задавайте в комментариях.

Светодиоды в наши дни нашли применение практически во всех областях деятельности человека. Но, несмотря на это, для большинства обычных потребителей совершенно неясно, благодаря чему и какие законы действуют при работе светодиодов. Если такой человек захочет устроить освещение посредством таких устройств, то множества вопросов и поиска решения проблем не избежать. И главным вопросом будет - «Что это за штука такая – резисторы, и для чего они требуются светодиодам?»

Резистор - это одна из составляющих электрической сети , характеризующаяся своей пассивностью и в лучшем случае, отличающаяся показателем сопротивления электротоку. То есть, в любое время для такого устройства должен быть справедлив закон Ома.

Главное предназначение устройств - способность энергично сопротивляться электрическому току . Благодаря этому качеству, резисторы нашли широкое применение при необходимости устройства искусственного освещения , в том числе и с использованием светодиодов.

Для чего необходимо использование резисторов в случае устройства светодиодного освещения?

Большинству потребителей известно, что обыкновенная лампочка накаливания даёт свет при её прямом подключении к какому-либо источнику питания. Лампочка может работать на протяжении длительного времени и перегорает лишь тогда, когда по причине подачи слишком высокого напряжения чрезмерно нагревается накаливающая нить. В таком случае лампочка, некоторым образом, реализует функцию резистора, потому как прохождение электротока через неё затруднительно, но чем выше подаваемое напряжение, тем легче току удаётся преодолеть сопротивление лампочки. Конечно же, ставить в один ряд такую сложную полупроводниковую деталь, как светодиод и обыкновенную лампочку накаливания нельзя.

Важно знать, что светодиод – это такой электрический прибор , для функционирования которого предпочтительнее не сама сила тока, а напряжение, имеющееся в сети. Например, если таким устройством выбрано напряжение 1,8 В, а к нему приходит 2 В, то, вероятнее всего, он перегорит – если вовремя не снизить напряжение до требующегося приспособлению уровня. Вот именно с этой целью и требуется резистор, посредством которого осуществляется стабилизация использующегося источника питания, чтобы подаваемое им напряжение не вывело устройство из строя.

В связи с этим крайне важно:

  • определиться, какого типа резистор требуется;
  • определить необходимость использования для конкретного прибора индивидуального резистора, для чего требуется расчёт;
  • учесть вид соединения источников света;
  • планируемое число светодиодов в осветительной системе.

Схемы соединения

При последовательной схеме расстановки светодиодов, когда они располагаются один за одним, обычно хватает одного резистора, если получится правильно рассчитать его сопротивление. Это объясняется тем, что в электрической цепи имеется один и тот же ток , в каждом месте установки электрических приборов.

Но в случае параллельного соединения , для каждого светодиода требуется свой резистор. Если пренебречь этим требованием, то все напряжение придётся тянуть одному, так называемому «ограничивающему» светодиоду, то есть тому, которому необходимо наименьшее напряжение. Он слишком быстро выйдет из строя , при этом напряжение будет подано на следующий в цепи прибор, который точно так же скоропостижно перегорит. Такой поворот событий недопустим, следовательно, в случае параллельного подключения какого-либо числа светодиодов требуется использование такого же количества резисторов, характеристики которых подбираются расчётом.

Расчёт резисторов для светодиодов

При правильном понимании физики процесса, расчёт сопротивления и мощности данных устройств нельзя назвать невыполнимой задачей, с которой не под силу справиться обычному человеку. Для расчёта требующегося сопротивления резисторов, нужно обязательно учесть следующие моменты:

Расчёт резисторов при помощи специального калькулятора

Обычно, расчёт сопротивления таких приспособлений, требующихся для какого-либо светодиода, производится посредством специально предназначенного для этих целей калькуляторов. Такие калькуляторы, удобные и высокоэффективные, не нужно откуда-то скачивать и устанавливать – рассчитать резистор вполне можно и в онлайн-режиме.

Калькулятор расчёта резисторов позволяет с высокой точностью определить требуемую мощность и показатель сопротивления резистора, устанавливающегося в светодиодную цепь.

Для расчёта требующегося сопротивления необходимо в соответствующие строки онлайн-калькулятора внести:

  • напряжение питания светодиода;
  • номинальное напряжение светодиода;

После нажатия соответствующей кнопки выполняется расчёт и на экран монитора выводятся полученные расчётные данные , при помощи которых можно в дальнейшем без особого труда организовать искусственное светодиодное освещение.

Также в онлайн-калькуляторах имеется некоторая база, содержащая данные о светодиодах и их параметрах. Представлена возможность расчёта:

  • номинала приспособления;
  • цветовой маркировки;
  • потребляемого цепью тока;
  • рассеиваемой мощности.

Человек, не сильно разбирающийся в электрике и физике, в большинстве случаев не сможет самостоятельно рассчитать устройства для светодиодов. По этой причине, проведение расчётов при помощи функционального и удобного онлайн-калькулятора – неоценимая помощь для обычных людей , не владеющих методикой расчётов с применением физических формул.

Большинство известных производителей светодиодов и созданных на их основе лент, на своих официальных сайтах выкладывают и собственный онлайн-калькулятор , с помощью которого можно не только подобрать требующиеся резисторы и светодиоды, но и вычислить параметры использующихся токовых приборов в различных режимах эксплуатации при переменных значениях тока, температуры, подаваемого напряжения и пр.

Расчет резистора для светодиода довольно прост и занимает минимум времени. Кроме того существуют множество онлайн калькуляторов, которые помогают выполнить подобные расчеты. Однако, я считаю, что гораздо полезнее самому разобраться в этом вопросе, понять физику протекающих процессов и собственноручно выполнять подобные расчеты. Этим мы и займемся в данной статье.

Светодиоды являются универсальными приборами. Они могут использоваться в качестве индикации, либо просто могут быть полноценными осветительными приборами.

У практикующих начинающих электронщиков довольно часто возникает ситуация, когда нужно запитать светодиод от источника питания, напряжение которого значительно превышает номинальное напряжение светодиода (рис. 1 ). Например, напряжение аккумуляторной батареи 12 В , а светодиод на 2 В (рис. 2 ) Если на светодиод подать такое напряжение, то он попросту сгорит. Или когда светодиод используется в качестве индикатора напряжения 220 В . Без применения специальных мер, при подключении на прямую, он также выйдет из строя.

Рис. 1 - Схема подключения светодиода через резистор

Рис. 2 - Схема прямого подключения светодиода к источнику напряжения

Для того, чтобы снизить напряжение на светодиоде и ограничить ток в его цепи, нужно последовательно с ним соединить резистор (рис. 3 ). Давайте рассчитаем параметры этого резистора. Такая методика подойдет для любого светодиода при любом напряжении источника питания.


Рис. 3 - Соединение резистора со светодиодом

Расчет выполним на примере светодиода типа АЛ307 (рис. 4 ). Номинальное напряжение его Uсд = 2 В , а ток Iсд = 10 мА = 0,01 А. Питать светодиод мы будем в первом случае от Uип1 = 12 В , а во втором – от Uип1 = 5 В , поскольку такие величины напряжения наиболее распространены. Этих трех параметров нам достаточно знать, чтобы рассчитать сопротивление R для светодиода.

Рис. 4 - Светодиод АЛ307. Внешний вид

Выпишем исходные данные.

Uип1 = 12 В;

Uип2 = 5 В;

Uсд = 2 В;

Iсд = 10 мА = 0,01 А.

Сначала находим величину напряжения ΔU R , какую должен погасить резистор, т. е. находим падение напряжения на резисторе. Оно равно разнице напряжений источника питания и светодиода:

ΔUR = Uип – Uсд;

ΔUR = 12 – 2 = 10 В.

Т. е. на резисторе должно погаситься 10 В . Сопротивление резистора R равно отношению падения напряжения на нем ΔU R к току (рис. 5 ):

R = ΔUR/Iсд;

R = 10/0,01 = 1000 Ом = 1 кОм.


Рис. 5 - Сопротивление резистора для светодиода при Uип1 = 12 В

Определим сопротивление для светодиода при питании от источника напряжения 5 В .

Uип = 5 В;

Uсд = 2 В;

Iсд = 10 мА = 0,01 А.

Падение напряжения на резисторе:

ΔU R = Uип – Uсд;

ΔU R = 5 – 2 = 3 В.

Сопротивление (рис. 6 ):

R = ΔU R /Iсд;

R = 3/0,01 = 300 Ом.


Рис. 6 - Сопротивление резистора для светодиода при Uип2 = 5 В

И так, сопротивления резисторов мы определили. Однако знание его величины еще не достаточно, чтобы включить резистор в цепь. Также очень является мощность рассеивания, которая выделяется резистором в виде тепла вследствие протекания через него тока.

Расчет мощности резистора для светодиода

Существуют стандартные. Визуально мощность рассеивания резистора можно определить по размеру (рис. 7, 8 ). Чем больше размер резистора, тем большую мощность он способен рассеять.


Рис. 7 - Резистор с мощность рассеивания 0,125 Вт


Рис. 8 - Резистор с мощность рассеивания 1 Вт

Чтобы окончательно определимся с выбором резистора рассчитаем его мощность рассеивания P , которая равна произведению напряжения, приложенного к резистору ΔU R , на ток Iсд , протекающий через него.

P = UI = U 2 /R = I 2 R.

P1 = 0,01 2 ·300 = 0,03 Вт.

P2 = 0,01 2 ·1000 = 0,1 Вт.

Как видно, в обеих случаях нам подойдет резистор с мощностью рассеивания 0,125 Вт или больше.

Давайте подытожим алгоритм расчета резистора для светодиода.

  1. Определяем падение напряжения на резисторе.
  2. Находим сопротивление.
  3. Рассчитываем мощность рассеивания.

Являясь полупроводниковым прибором отличается нелинейностью вольт-амперной характеристики (ВАХ); зависимость тока от напряжения носит экспоненциальный характер. Даже небольшое превышение напряжения питания может вызвать появление тока, способного вывести светодиод (далее СД) из строя.

Поэтому, для ограничения тока в качестве гасящего балласта применяют обычный резистор, от правильного расчета сопротивления которого зависит работа светодиода и срок его службы.

При питающем напряжении, превышающем рабочий диапазон напряжения СД может попросту сгореть, при заниженном - либо светиться “вполнакала”, либо совсем не включится.